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The stability of simply -connected isotropic compretcible elastic bodies with 
an a&Wry form of tk ela&ic potential subjected to uniformall-arumdcomp- 
ression is investigated. The three-dimensional linearized theory of elartic 
stability for finite and small precritical deformations ia involved, The case 
is considered when the body surface consista of two parta. one of which is rigid- 
ly clamped or hinged. It is proved that the equilibrium state will be &able if 
the pressure is applied in the form of a ” follower” load on the second part of 
the surface, and is unstable if the pressure is applied in the form of a “dead” 
load on this part of the surface. In the latter case,the critical load for thin- 
walled bodies is approximately half the Euler force, Examples are conaidered 
for rectangular and circular plates, as well as for a circular rod in the case of 
materials with different forms of the elastic potentiaL 

After the paper [l] had been published, the question of the stability of iso- 
tropic compressible simply-connected bodies under a&around compression was 
considered in numerous papers from different aspects of the three-dimensional 
theory of stability under small and finite precritical deformations. The dis- 
agreement between the results from these theode, was explained by the inacc- 
uracies of ,tie theory of small precritical deformations. BeauIts have been 
obtained in [2,3] in general form for the theory of finite and small precritical 
deformation, and a survey of investigations on the problem considered is pre- 
sented in 123. 

I.. Formulation of the problem. Letusexaminetwokinds of 
problems of the theory of elasticity. Let problems with identical boundary conditions 
on the whole body surface be among the first kind. In this case, it ti shown in [Z] 
that under the effect of follower loads the equilibrium state will be stable if the con- 
ditiorm 

&I + % po > 0, po > 0 

are satisfied. 
The quantities ho and p. are expressed in terms of the elastic potential [2,41. 

Since the inequalities presented assure an explanation of phenomena observed experi- 
mentally, we shall consider that they are always satisfied and we shall consider them 
as constraints on the form of the elastic potential. 

Such conditions have also been obtained in [53 and in a number of other papers. 
The peculiarity in the results in [Z] is the fact that the stability conditions are obtain- 
ed in general form for the theory of finite and small precritical deformations in the 
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latter case for wbfch it was necessary to use a more exact expression [Z) than is ordtn- 
arily taken [S, 81 in the theory of small precdtfcal deformations to&term&~ the fomw- 
er loads. In the case of the action of dead loads, it is shown tn [3] with expamplcs 
of the plane problem of a circular continuous cylinder and the axtsymmetrtc problem 
for a continuous sphere that there extst critical loa& which do not contradict the in- 
equalities presented. 

Among the second kind are problenrr with different boundary conditions on separ- 
ate parts of the boundary surface of the body, Zo ttda case, it is shown in c2] with the 
example of a hinge-supported strip that the equ~b~um state will be stable if a follow- 
er load is applied to the tide surfaces, and unstable if a dead load ir applted to the 
side surf&~~. In ti &at&r case, the cakulated critie4 load ftx a ~0~~ &rip 
turned out to be iy~~~~~~f~8~~~ 

Let us con&der spstfa~ problems on the &abiMy uf plates and cyltudrinal b&es 
under unifam a&around compression when different boundary condttiona are given 
on separate parts of the bounkry surface. We &all consider the body compreaaible, 
isotropic with au arbitrary form of the elastic potenti& and rlmply-ooanaPcte4 which 
will assure the existeme of a homegeneou6 pmccdt&al #t&e. We shail uw a Lagrange 
coordinate system which will cnfneide with the Carkesian (zI, x2, 23 or the circul- 
ar cymbal (F, 0, xdf system8 in the unattainod stat& We shall ir.%dtcatt Austin 
refarbg to the pncrftfcal Stake by the Supcncdpt m. We CCBdQCt the ~~~g~~~ 

in general form for ~~-~~~ lineaM tiie&a af 4dadic s~~~~ u&r fin- 
ite and small preorittoal stnknr 8,9L 

According to t2.31, the ltnea&M equations of motion in the abaenee of volume 
force pertnrbat&nt can be rcprea&ed as foUows for the ease under consideratiom 

(A,, + 2~~) grad div u - p. rot rot u - pu” = 0 (1.1) 

The strest boundary conditions on the part S1 of the body arrface can be written 
as 

Qjsl=R Q=N(1LO+(fg*)divu+(21to-ao*)(NV)u-t (1.2) 

(PO - q,*)N x mu 

Here N k the nanal direction to the body surfme tn the umtrairked state. and 
P is the pertmbatbn of the cxtessl loads acthg on S, . 

The displacement boundary conditions on the part S, of the body surface CBn be 
written in the form 

u Is, = 0 (1.3) 

Inthecaseoftheaetienof~dIordr p I 0, in the cacc dtb actfon of 

follower bad% the ~ harken& h @J 

P I ao* [N div u - (NV) u - N x rot uf is* (l*O 

Expressions to determine the quantftie~ lot pll and oo* in terms of thcela&ic 



C% the stability of elastic compressible bodies 1023 

potential are presented in [2,4] for different problem formulations. 
The general solution of {I. 1) without inertial terms and tahing account of the 

results in [8] for the case under consideration can be represented as 

u, = (1.5) 

us = 

where li) and 31 are, respectively, the harmouic and biharmonk fituctions. 
The expressions (1.5) are written for a cyltndrical body whose axis coincides with 

the axis 02s and n and s are the normal and tangent to the cross-sectional outline. 
It must be noted that (X.4). which determines the follower load in the case of the 

theory of small precrftical deformations differs fkom the ~o~~~~g expressions in 
[6 -8 3. The expression (l.4) has been famd in [2] for the theory of small precritical 
deformations dram the appropriate linearized relationships following from the theory 
of finite precritical deformations. 

2, Certain general question*, ~t.~~~nec~gen~al~e- 
stions referring to the class of three-dimensional stability problemsunder consider&tic% 

On the applicability of the Euler method.Letusexamine 
the question of the possfbilfty of applying the Buler method to investigate the stability 
of elastic isotropic bodies under ali-asouud compression when the boundary conditions 
are dffferent on separate parts of the bamdary surface (problems of the second hind). 
This question evidently does not ocmr in the case of the action of dead loads. Let us 
consider the ease when the follower load is given on the part s, of the body surface 
bounded by the curve L. By using (1.4) to determine the follower load, it is shown 
in [lo] that the sufficieut conditions for applicability of the Euler method are satfsfied 
if one of the following quantfties vanfshes on the curve L : 1 )tbe disphrcement direct- 
ed along the ncXma1 to the surface &j 2.> the displacemutt directed along the norm- 
al to the curve L on thesurface S,. 

Henceforth, we shall consider the case when the body surface consists of two parts 
&I = S, + Ss, where the follower load acts on the surface S1 , i. e.,the right 

sides of ths boundary conditions (1.2) have the form (1.4). We shall also consider 
thesurfaces 8% and SB tointessect on the curve L. 

Let us note that two cases are known when the Buler method can be used: the first 
is when a dead load acts, and the second is when a fonder load acts on the whole 
body surface. Let us mention two other cam of the applicability of the Euler method 
under uniform all-around compression when the follower load act on the part s1 of 
the body surface. 

The first is when the part Ss of the body surface is r&idly clamped, i. e., con- 
diticns (1.3) are satisfied. These consitions are also satisfied on the curve L , there- 
fore, the conditicus obtained in [lo] are also satisfied. Hence, the Euler method can 
ben applied independently of the body shape for the problem under consideration. 

The second is when the surface s1 and S, are orthogonal and the hinged- 
support conditions are satisfied in the integral sense, i. e., 
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us =o, Qn=O (2.1) 

Here n8 is the component of the dirglacsrntnt vector in the tangent plane to S, 
and Q,, is the component of the stress vector directed along the normal to sg. 
Because of the orthogonaLity of S1 and Ss, the first conditions (2.1) assures com- 
pllance with the first con&ions obtained in [lo% 

Let us note that the sufficient conditions for the app~cab~~ of the Euler method 
Cl01 are also sat&fled under conditiona (2.X) when the normals to the surfaces S, 
and Sa coincide on the curve L . In this case, the first condition in (2.1) assures 
compliance with the second condition in [lo], however, this case has no clear physical 
interpretation. 

It must be noted that a case when the follower load in the form of a nniform press- 
ure is given cm a part of the body surface ia also ~~~~ated in n]. However, a less 
accrkote compared to (24) is used to define the folinwer load in PI, 
hence, the Kirchhok -Love hypothe& must be used. In this connection, the results 
in 171 refer just to the stability theories of thin-walled systems constmcted by involv- 
ing the Kirchhoff-Love hypothesis. 

Stability for rigid clamping of the boundary surf- 
a c e. ~t~~~~~~~~ S, of#~~y~ace S = St + 
Ss is Iwbd by a follower load while the part S, is rigidly clamped. The condit- 

ions (1.2) are &lsfied on S1 with (1.4) taken into account, while condittons ( L 3) 
aresatfsffedon s*. The Euler method is applicable in this case. Therefore, the 
problem under carsideratiasa reduoea to (3.. 1) without inert&l terms and to boundary 
~~~~LZ~ and(1.3) ~~g(l.4~ into account The p~~tl*~) -0.4) goes 
over fabthc classical Unear homogeneurs pro&m of etodlcity thoocy if h and 
p arereplaoedbytheparameters a, and ~0 inthelatter, Inthiscase, as is 

known @I. the B&mar bcmogeneous problem of clas@al e&tkity theory horatdvial 
solutiosr if the above-mentioned stability coadim am satfsfled; the Mbrlum pea- 
i~~~~~b~~~~y~~~~y~~. Whenacleadroad~rSon Sx 
it is impo&ble to obtain the stability condition in the form indqendent of the body 
shape since the boundary conditiiont (1.2) for zero right sicka do not agrabs WM the 

c~~P=wJ ho=%-- botladaiy caadftionr f3f linem isla8tici~ theory. 
Stability for hinged support of part of the bound- 

a r y s u r f a c e. Let us consider a cylinder or arbitrary cross-section, whose ards is 
directed along 0~s. bet us con&k the side &face loaded by a follower load. 
while the endfaces (q, i 0, xs = 2) are hinge mpp&ed. Sn this case. accord- 
ingto(1,2)and(2.1), weobtainthefcUowingc@@tlomfot~s=O~d Xs=1: 

Ul 
_;o; u,= 0; (ho + ~a*) div u + (2~~ - CT,*)% / 8% = 0 (2.2) 

We obtain bamdaq corrdltious (1.2) on the side surfaoe under the condition (1.4). 
The Euler method is appear in the ca* under ~~~* Thcnfore, the prob- 

lem under colMeBUon reduces to (1.1) wHhurt &rer?U terms, to bomMary coudl~ 
(1.2) on the side surface wirh (1.4) t&err mto account and boundpry condktions (2.2) 
on the endfaces for zs = 0 and xs = 1. It is irq~&Me to reduce the problem 

(1.1). (1.21, (1.4) and (2.2) to a linear homogeneous psoblcm of claaaloal SLattieity 
theory by replacing the parameters h .and p by ho and p. becauseofthestmcture 
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of the last condition in (2.2). In this connection, we represent the displacements in 
the form 

% = ~~(51, ~3) sin (nml-lx,), u, = ID&,, 2J sin (nn@&d c2,3J 

us = uJ,(zT~, 52) cos (ml-kc,) 

The displacements (2.3) satisfy the hinge support conditions in the form (2.2),( 2.3). 
From ( 1. l), (1.2), (1.4)and (2.3) we obtain a two-dimensional homogeneous problem 
in LU&~, 5~q) which agrees with the appropriate homogeneous linear problem of 
classical edasticity theory upon replacement of the parameters h and p by &, and 

po. As is known, this latter problem has a unique trivial solution. Therefore, 
the equilibrium state under consideration is stable for a cylinder ofarbitrary cross-sect- 
ion. 

In the case of dead loads acting on S1 , the im-estigation must be performed with 
the specific shape of the body taken into account, 

3. P 1 a t c s t a b i 1 I t y. Let us examine the stability of rectangular and circul- 
ar plates under hinged support, as well as in the rigid clamping case. 

Rectangular plates. 
a; 0 6 q < b; 

Let us consider a rectangular plate (0 < x1 < 
--h < x3 d d- h) under all-around compression whenit fahinge 

supported at q = 0, x1 = a, x2 = 0 and 2s = b and is loaded by a dead 
load for xa = f k . In conformity with (2. l), (1.2) and (2.21, we obtain the 
boundary conditions in the form 

Xl = 0; xl = a, I.+ = 0; ua = 0; (ho + uo*) div u + (2p. - (3.1) 
us*)aUl/ az, = 0 

% = 0; 9 = b, ul = 0; us = 0; (5, + cro*) div u + (3.2) 
@PO - uo*)au, / ax* = 0 

z3 = * A, (2po - ao*) 2 + (CL0 - ao*) (2 - 2) = 0 (3.3) 

(2p. - ao*) 2 + (PO - uo*) (2 -2) = 0 

(A0 i- bo*) div u + (2p. - uo*) au, / 82, = 0 

The Euler method is applicable in the case under coxuideratiaa. The general sol- 
ution (1.5) has the form 

Ul = at, a +_-L 
aqax, xi u= = - ax, 

L?p-_L 
axgx, x (3.4) 

u3 = 
n0+21rk? 
~,-I- PO ( 

A_ ?%+CLo x 
so-l-2iLo a%? x 1 

We represent the harmonic and biharmonic functions \t, and X satisfying condit- 
ions (3.1) and (3.2) for the bending buckling mode in the form 

9 = 4 sh ?xs cos (mna-lxx) cos (nnb-lx,) (3.5) 
ya = @m/a)* + (am/b)’ 
x = (B ch 7x3 + Cyx, sh yx3) sin (JWUZ-~X~) sin (nnbwlxs) 
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For buckling nitb the f~~~~ of a neck, the formations 13, and 1~ bang 
cau.Utions (3.1) and (3.2) are represented as follows 

I# = A ch ‘~q, cos (ma-‘q) cos (nnb+& 

x = (B sh yzs + Cyq ch y;cS) sin (n LW-%~) sin (a~nb+~) 

(3.6) 

From (3.3) and (3.5). we obtain the charactehtic equatim in the form 

det II aif II = 0 (i, j = 1,2,3) (3.7) 

Qll = --~“pnb-L’Y ch yb, al, = -p,gcnaa-‘y”{2p, - be*) ch yk 

%l = -aUmn-la-lb~ %a = al,nm-'b-la* %a = 1s a nm-rb-la 

aa1 == 0, q,a = - (2;, - o,j*) y” sh yh; q,; = - (2~~ - oo*) x 
%k? + %* & + kb) 

y8rhhWk b+ti 
y3 sh @ 

and from (3.7) we find 

It follows from (1.2) and (1.4) that the boundary couditiaas in the true of a follow- 
er load are obtained formally from the badary conditiona for a dead load (coaditions 
(r.2) for P = 0) if we set t&* = 0 in the latter. In this case we obtain from 
(3.8): 

since sinh 2yh > 2yh , we obtain det 11 atj II < 0 from (3, $0. In the 
case of the action of a follower load, the tquilibrium state is therefore stable. The 
deductfoa obtained fiW&rate% the~gtaaral-result of Sect 2, abtafned fop a hdy of 
arbitrary shape, 

For a dead load, we obtain a characteristic equstlon from (3.81, whose roots have 
physical meaning 

(3.10) 

It must be noted that (3,lOJ agmes in form with the conarpoadfng VatiOn C2l 
for a strip, however, in the case unxiat c~&raQ~ the ~a&itha h, ~0, and oO* 
are exprcsated in terms of the elastic potential by udng r&Wxu&x for the tpafial 
problem. Let us note that we obtain an equation in the fozm (3.10) also in the cate 
of buckliag with the formation of a neck. 
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Circular plates. Letusconsidexacircularplate (O\<r<f; v-h\< 

ZQ < -I- h) under all-around compmasion when it is rigidiy clamped for r = 
R and subjected to a dead load for .~s = & h . We form the rigid clamping cott- 

ditioll for r = R for the axfsymmetric problem in the integral sense as follow 

ur = 0, by / ar = 0 (3.11) 

~cef~, we shall limit ourselves to an ~v~ga~~ of just the ~~rn~t~c 
problem of the plate. In this case, acco&ing to (1.21, we obtain the following bound- 
ary conditions for x8 = j= h 

(%* - %*)a% /a&+ + (PC4 - d@*)(au, I dr - du, I aa!*) em2 0 (3.12) 

&I + %*N% I at + u, f t -t au, I airs) + (2& - @,*)&J, / 
as* = 0 

The Euler method is also applicable in the case of the boundary conditions under 
carsfderation, Let us use the representation (1.5) of the solution of (1.1) witbout in- 
ertial terms. For the axisymmetric problem we obtain the following repreaentatia 
from (1.5) 

(3.13) 

Here x is a biharmonic function. We select the biharmonic function satistj&g 
condit&ns (3.1) in the case of the bending buckling mode as 

x = <A ch VG + &~, sh yz,)Js(~~), r = xr: / 8, J,,’ (x~) = o (3.14) 

and in the case of bucklfng with neck formation as 

Here J&T) is the zero order Base1 function of the first kind. Let ua first con&id- 
er the bending buckling mode. From (3.14) and (3.12) we obtain the charact&stfc 
equation in the fam (3.7) for t, i = i, 2. ?hc elemcntr of the characteristic 
determ&ant are 

%l = -+fab -W ahyh, air; = -yW& --ao*W=Jqh + 

b&+~o*)(b+ W-lcW1, a, = --?f* (2y, - uo*) Bh@ 
(3.16) 

% = -y'Q2po -ai,*lyhchy~ - 12p,'+ u&he + p&x 
(ao + pe)-'~ yhl 
We obtain the following expre&on from (3.7) and (3.16) 

det II Qj II = Y" (2po - UO*)~ yh x (3.17) 
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It must be noted that the solutfon (3.l5) in the case of buckling with neck format- 
ion can be obtafaod from the sokMon (3.14) iu the case of the bending buckling mode 
if the s&h and co& are interchanged in the latter, which permits obtaining a charact- 
eristic equation for buckliug with neck formation from (3.17). Since these functions 
enter symmetricallv into (3.17), thus (3.17) refers to the two casea under consideration. 

Setting ufJ* = 0 in (3. X7), we obtain the characteristic determ&rant for the 
follower load in the form 

By analogy with the rectangular plate, we fiud that ffie abet state is stable 
under the action of a follower load. The deductfou cbtaiued illustrates the general 
result in Sect. 2 obtalued for a body of arbitrary shape. 

For the case of a dead load, we obtain an equation iu the form (3.10) whose roots 
have physical meauing from (3.17). 

Now, let PI axuider example br boditr with elastic p&eutMs of aprcifk form. 
Example 1. Withfnthtfta~~ofthertcond~riratofthethaoryofsmall 

precrftical dtformrtons, let us car&der the example of a body with an elastic poteut- 
ial in the form 

a* = 1/&&“2 + j&O (3.19) 

The poteutfai (3.19) to a linearly elastic body, where h and P are 
Lam6 coustanls. From (3.19) and [2J we obtain 

i* = h - oa, ILO = p + (Ia 

Analogously to [2], we determine two roots from (3.20) and (3.10) 

(3.20) 

PI,2 = G & [Gf’ - CL (;1 + PW - 2yh/sh 2yh))“’ 

G = I/* 13a + q.8 - 2yh (1 + p)/sh 2@1 

(3.21) 

Here p = - 00 is the eompresaive load intexsity. From (3.21), we find for the 
log-wavers buckUng mode (for thin-walled p@W 

me pc is the ctit&l khad, Pe is the value of the critical load ~&&d by 

fnvokviag the Rrchhoff -Love hypothesis for compre&ou of a plate in its plane by 

a uniformly distributed load ( Euler force): for a rectangular plate rl* = A* (a-s -i- b-s), 
for a circular plate y1 = n#+. 

E x a m p 1 e 2. WitMu the framework of the theory of fin& precrit&al deform- 
ations, let us ConsidGr the example for a body with a -potential of harmm& type ElB 
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Here At are the elongation coefficientr along the principal axes. From (3.22) 
and [4] we obtain 

I.0 = h - (3A + 2P)($ - 1) 1 A,, PO - [2P + (3h + 4p)(h, - i)] / (2&) (3.23) 
uo* = (3h + 2PGl - 1) / J.1 

We find two roots from (3,23) and (3.10) 

WI = 0, 

c 
sh2yh -1 

PA+ (W + W + 15&l 2yh 
3 

The fi& root has no physical meaning* In the case of the &~g-wav~~g~ buck- 
ling mode, we obtain from the second expression 

hl = &), z 1 - V9 (RN% (A + CL)& + 2l.P (3h + 2N’ 

Therefore, buckling is possible under the effect of a dead load. 

4. Stability of a circular cylinder. ~t~c~~~~~- 
ity of a circular cylinder (0 < r < R; 0 < x, Q I) under all-around compr&rr- 
ion when it is hinge supported for x8 = 0 and xg = 1 but is loaded by a dead 
load for I” = R . We under&and the hinge-support cmditionr in the integral sense. 
For X3 = 0 and X3 = .8 the boundary conditions have the form (2.2) and the form 
(t2)for r==Rtith p = 0. The Euler method is applicable in the case under 
consideration. From (1.5), we obtain the general solution in the following form 

u, = 

UQ = 

1 a -- 
r a69 -&x9 ue = - 
hJ+2p” 
A” + PO ( A_ i*,+po 6:! 

$+2po TGp ) x 
&&&-x (4.1) 

Let us select t&e functions 9 and X satisfying the condition8 (2.2) in the form 

9 = sin (nmZ+~) AI, (mnl-‘r) sin nCJ (4.2) 

X =c~~rt;z,f~l,(m;F)+c~~F~~+,(m~~)]~ne 

We f’ind the characteristic determinant from (4.2). (4.1) and (1.2) 
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Let US conside the rod bttcMing mode whwl 

~~~~g~~(~g~) a<l. 
n = m = 1 . For the mg-wave- 

In this case we obtafa [41 the cttaraeter- 
istic determinant with two+erm accuracy in the farm 

6 = 2yr” - Go* 
~0+Ir, +&- {MO Go + go*) @Of230°$) + EL0 (PO + Go*) x (4.4) 

Po-k2po)- (~o+~o*)(~o+Po)(~1ro --0*,1+$- [2PO(hO$ cJo*jx 

(q&3-!- ~hJ*) + 2Po% + Z~o){~o + w*1- 

G$o- ao*)@o + CLOWELO f Qao*,l} 

Let us examine examples for elastic bodies with poteptinfa of spafic form. 
Example 1. Wifhfathcframewatkofths~dvarfaatofthtthGory of 

~~~~~~~ ~~~~e~e~~ef~a~y~~~~c 
V in the form (3. SJ. In this case WC obtaha from <a, IL@, (8. Zof W (4.4) 

PC x ‘IaPe, PC = ‘ha% (a + 2p)i(a + i4) (4.5) 

Here PI istheRLhfixcemK?exaxfpII# for a circular rod, 
E x a m p 1 e 2. Wit&n the fxamewak of tht theory of fWte pre@ical deform- 

atfoss let u11 coarfder an example for a body wi# a p&ent&l of harmonic type (3.22). 
In this case, the relaU&ps (3.23) hold. From (3.221, (3.23) and (4.4). we obtain 
for the long-wavelength buckling mode 

(UC = 1 - 1/8a8p / (a -I- p) (4.6) 

Let p* ddwte t?m comprdve lead fntcwity per unft area at the time of buck& 
ing. It folIow8 from [2] 

P * = -_o q -1 0 1 

From the thin! wtplstdbn in (3,231, (4.61 and (4.7) we obtain 

(CV 

PC* = %P* (4.8) 

The exprtions (4.8) Pad (4.5) agree. Therefore, if the critk%l load L Irmasmd 
per unit area at the time of humming, then the IWWS obta@ed by the theory of finite 
prec&ical de~thos and by the second variant of the theory of szWl pdtkal 
defamattoar agree fn the case of the ~gMwav~~ h&i@g ntode <for a *g Khd). 
Analogus nauHs are obtoincd fcrr thfpr d @ata 

Tht reprlb obtained affoxd the posibiltty of making a g-1 deducti- about the 
stabiltty problem for UW all-aramd Comprsrdm of S’imPiy-C~~ mtc 
comprcrdbh bodiw din ow part 8, of wi@e avfpce 8 - & -I- S, ~nge*~Pport 
or rigid cump&ng cm 8~e given. ‘I’& de&&h is that the equUtb&m state 
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wiII be stable ff the pressure is applied in the form of a follower load on the part Si 
of the body surface, and unstabIe if the pressure is applied in the form of a dead load 
on the part S, of the body surface. In this latter case, the critical load for thin- 
walled bodies is half the tiler force under compreaion. 
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