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The stability of simply -connected isotropic compressible elastic bodies with
an arbitrary form of the elastic potential subjected to uniformall-aroundcomp-
ression is investigated, The three-dimensional linearized theory of elastic
stability for finite and small precritical deformations is involved, The case
is considered when the body surface consists of two parts, one of which is rigid-
ly clamped or hinged, It is proved that the equilibrium state will be stable if
the pressure is applied in the form of a "follower" load on the second part of
the surface, and is unstable if the pressure is applied in the form of a " dead"
load on this part of the surface. In the latter case,the critical load for thin-
walled bodies is approximately half the Euler force, Examples are considered
for rectangular and circular plates, as well as for a circular rod in the case of
materials with different forms of the elastic potential,

After the paper [1] had been published, the question of the stability of iso-
tropic compressible simply-connected bodies under all-around compression was
considered in numerous papers from different aspects of the three-dimensional
theory of stability under small and finite precritical deformations, The dis-
agreement between the results from these theories was explained by the inacc-
uracies of the theory of small precritical deformations. Results have been
obtained in [2,3] in general form for the theory of finite and small precritical
deformation, and a survey of investigations on the problem considered is pre-
sented in [2].

l, Formulation of the problem, Letusexamine two kinds of
problems of the theory of elasticity, Let problems with identical boundary conditions
on the whole body surface be among the first kind, In this case, it is shown in [2]
that under the effect of follower loads the equilibrium state will be stable if the con-

ditions
Ao+ 2510 >0, po>0

are satisfied,

The quantities A, and p, are expressed in terms of the elastic potential [2, 4],
Since the inequalities presented assure an explanation of phenomena observed experi-
mentally, we shall consider that they are always satisfied and we shall consider them
as constraints on the form of the elastic potential,

Such conditions have also been obtained in [5] and in a number of other papers.
The peculiarity in the results in [2] is the fact that the stability conditions are obtain-
ed in general form for the theory of finite and small precritical deformations in the
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latter case for which it was necessary to use a more exact expression [2] than is ordin-
arily taken [6,8] in the theory of small precritical deformations todetermine the foilow~
er loads, In the case of the action of dead loads, it is shown in [3] with expamples

of the plane problem of a circular continuous cylinder and the axisymmetric problem
for a continuous sphere that there exist critical loads which do not contradict the in-
equalities presented.

Among the second kind are problems with different boundary conditions on separ-
ate parts of the boundary surface of the body. In this case, it is shown in [2] with the
example of a hinge-supported strip that the equilibrium state will be stabie if a follow-
er load is applied to the side surfaces, and unstable if a2 dead load is applied to the
side surfaces. In this latter case, the calculated critical load for a thin-walled strip
turned out to be considerably less than the Euler force under axial compression.

Let us consider spatial problems on the stability of plates and cylindrical bodies
under uniform all-around compression when different boundary conditions are given
on separate parts of the boundary surface, We shall consider the body compressibie,
isotropic with an arbitrary form of the elastic potential, and simply-connected, which
will assure the existence of a homogeneous precritical state, We shall use a Lagrange
coordinate system which will coincide with the Cartesian (2,, ;, z,) or the circul-
ar cylindrical (r, 8, z,) systems in the unstrained state. We shall indicate quantities
referring to the precritical state by the superscript zero. We conduct the investigation
in general form for three-dimensional linearized theories of elastic stability under fin-
ite and small precritical strains [8, 91

According to [2,3], the linearized equations of motion in the absence of volume
force perturbations can be represented as follows for the case under considesation:

(Ao + 2u,) grad div u — p, rot rot u — pu™ = 0 (LD

The stress boundary conditions on the part §,; of the body surface can be written
as
Qis‘s P; QE N(%—i—o’a*)divu -+ (2}&3—'0\)*)(NV)“~{— (1.2)
(o — Go*) N X rotu

Here N is the normal direction to the body surface in the unstrained state, and
P is the perturbation of the extemal loads acting on Sy .
The displacement boundary conditions on the part S, of the body surface can be
written in the form

uls, =0 (1.3)

In the case of the action of dead loads P = (), in the case of the action of
follower loads, the following expression has been obtained in [2]

P = g,* [Ndiva — (NV)u — N X rot u] |s, (1.4

Expressions to determine the quantities Ao, po and 0o* in terms of the elastic
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potential are presented in [2, 4] for different problem formulations,
The general solution of (1, 1) without inertial terms and taking account of the
results in [8] for the case under consideration can be represented as

a8 9% I} 9%
uﬂ‘”‘"‘?&""“"ana:, X us=——57§-‘p—-886:3x (1.5)
R = Ao + 2u4 (A— Atpy & )

8 Ao+ Mo Ao+ 24, Ozy?

where  and ) are, respectively, the harmonic and biharmonic functions,

The expressions (1, 5) are written for a cylindrical body whose axis coincides with
the axis Oz, and n and s are the normal and tangent to the cross-sectional outline,

It must be noted that (1.4), which determines the follower load in the case of the
theory of small precritical deformations differs from the corresponding expressions in
[6 —8]. The expression (1,4) has been found in [2] for the theory of small precritical
deformations from the appropriate linearized relationships foliowing from the theory
of finite precritical deformations,

2, Certain general questions, Letusexaminecertaingeneralque-
stions referring to the class of three-dimensional stability problems under consideration,

On the applicability of the Euler method Letusexamine
the question of the possibility of applying the Euler method to investigate the stability
of elastic isotropic bodies under all-asound compression when the boundary conditions
are different on separate parts of the boundary surface (problems of the second kind).
This question evidently does not occur in the case of the action of dead loads, Letus
consider the case when the follower load is given on the part S, of the body surface
bounded by the curve L. By using (1.4) to determine the follower load, it is shown
in [10] that the sufficient conditions for applicability of the Euler method are satisfied
if one of the following quantities vanishes on the curve L2 1)the displacementdirect-
ed along the normal to the surface S, 2)the displacement directed along the norm-
al to the curve L on the surface §,.

Henceforth, we shall consider the case when the body surface consists of two parts

S = 8§, + §;, where the follower load acts on the surface - §, , i.e.ythe right
sides of the boundary conditions (1, 2) have the form (1.4). We shall also consider
the surfaces S, and S, to intersect on the curve £,

Let us note that two cases are known when the Buler method can be used: the first
is when a dead load acts, and the second is when 2 follower load acts on the whole
body surface, Let us mention two other cases of the applicability of the Euler method
under uniform all-around compression when the follower load act on the part S, of
the body surface,

The first is when the part S, of the body surface is rigidly clamped, i.e., con-
ditions (1. 3) are satisfied, These consitions are also satisfied on the curve L , there-
fore, the conditions obtained in [10] are also satisfied. Hence, the Euler method can
ben applied independently of the body shape for the problem under cansideration,

The second is when the surface §; and S, are orthogonal and the hinged-
support conditions are satisfied in the integral sense, i e,,
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u, =0, Q,=0 (2.1

Here U, is the component of the displacement vector in the tangent plane to S,
and (Q, isthe component of the stress vector directed along the normalto §,.
Because of the orthogonality of S; and §,, the first conditions (2, 1) assures com-
pliance with the first conditions obtained in [10].

Let us note that the sufficient conditions for the applicability of the Euler method
[10] are also satisfied under conditions (2, 1) when the normals to the surfaces §,
and S, coincide on the curve [, . In this case, the first condition in (2, 1) assures
compliance with the second condition in [10], however, this case hasno clear physical
interpretation.

It must be noted that a case when the follower load in the form of 2 uniform press-
ure is given on a part of the body surface ia also investigated in [7], However, a less
accufate expression, compared to (1.4) is used to define the follower load in [7],
hence, the Kirchhoff —Love hypothesis must be used, In this connection, the results
in [7] refer just to the stability theories of thin-walled systems constructed by involv-
ing the Kirchhoff—Love hypothesis.

Stability forrigid clamping of the boundary surf-
ace, Letusexamine the case when the part §, of the body surface S = §; +

S, is loaded by a follower load while the part §, is rigidly clamped. The condit-
ions (1,2) are satisfied on S; with (1.4) taken into account, while conditions (1. 3)
are satisfied on S, . The Euler method is applicable in this case, Therefore, the
problem under consideration reduces to (1, 1) without inertial terms and to boundary
conditions (1. 2) and (1, 3) taking (1.4) into account, The problem (1,1) —(1.4) goes
over into the classical linear homogenecus problem of elasticity theory if A and

i are replaced by the parameters A, and Mo in the latter, In this case, as is
known [5], the linear homogeneous problem of classical elasticity theory has a trivial
solution if the above~mentioned stability conditions are satisfied; the equilibrium pos-
ition will be stable independeatly of the body shape, When a dead load acts on S,
it is impossible to obtain the stability condition in the form independent of the body
shape since the boundary conditions (1. 2) for zero right sides do not agree with the
corresponding homogeneous boundary conditions of linear elasticity theory,

Stability for hinged support of part of the bound-
ary surface, Let us consider a cylinder or arbitrary cross-section, whose axis is
directed along  (z,. Letus consider the side surface loaded by a follower load,
while the endfaces (z, = 0, z, = [) are hinge supported, In this case, accord-
ing to (1.2) and (2. 1), we obtain the following conditions for z; = Oand 23 = [ :

up = 0; ug=0; (Ao + 00*) divu + (2pp — 00*)0uy / 923 =0 (2.9)

We obtain boundary conditions (1, 2) on the side surface under the condition (1. 4).
The Euler method is applicable in the case under consideration. Therefore, the prob~
1em under counsideration reduces to (1. 1) without inertia terms, to boundary conditions
(1.2) on the side surface with(1.4) taken into account and boundary conditions (2. 2)
on the endfaces for 3 = 0 and 3 == l. It is impossible to reduce the problem
(L. 1), (1.2), (1.4) and (2.2) to a linear homogeneous problem of clasical elasticity
theory by replacing the parameters A.and p by Ay and p, becauseofthestructure
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of the last condition in (2, 2). In this connection, we represent the displacements in
the form

u; = wi(Ty, T,)sin (ml-lzy), u, = wy(x,, ) sin (wml-lz,) 2.3)
Uy = Wy(y, Z,) cos (uml-lz,)

‘The displacements (2, 3) satisfy the hinge support conditions in the form (2. 2),(2. 3).
From (1.1), (1, 2), (1,4)and (2, 3) we obtain a two-dimensional homogeneous problem
in  w;(z;, z;) which agrees with the appropriate homogeneous linear problem of
classical elasticity theory upon replacement of the parameters A and p by A, and

Mo. Asis known, this latter problem has a unique trivial solution, Therefore,
the equilibrium state under consideration is stable for a cylinder of arbitrary cross-sect-
ion,

In the case of dead loads acting on S, , the investigation must be performed with
the specific shape of the body taken into account,

3, Plate stability, Letusexamine the stability of rectangular and circul-
ar plates under hinged support, as well as in the rigid clamping case,

Rectangular plates, Letusconsider a rectangular plate (0 < 7, <
a; 0z b —h < 23 < + h) under all-around compression when it ishinge
supported at 1z, = 0, z; = a, 2, =0 and z, = b and is loaded by a dead
load for z3 = = & . In conformity with (2.1), (1.2) and (2.2), we obtain the
boundary conditions in the form

=0, z3=a, u=0; u3=0; (A + 0p*)divu+ 2p, — (3.1
¢*)0u, / 6z, = 0

Z,=0; z3=0, u;=0; ug=0; A + 0,*) divu + (3.2)
(Zpo et do‘)auz /0.1:2 == O
6u3 du
= -4k, (2}Lo — Uo*) + (Ko — G0o*) ( - 6:::) =0 (8.3)

(20 — 00%) 222 +<uo—°o*>( fu_su)
()\-o + Go*) le u + (2“0 — Gp ) aus /aza = O

The Euler method is applicable in the case under consideration, The general sol-
ution (1, 5) has the form

9 & 9 o
M=V~ e b =~ g Y X 8.4
Ao + 21, _ Mg+ Ko L

Ao+ tho <A Mo+ 2py Ozg? ) x

U3=

We represent the harmonic and biharmonic functions P and Y satisfying condit-
ions (3, 1) and (3. 2) for the bending buckling mode in the form
Y = 4 sh yz, cos (nma-z;) cos (nnb-'z,) (3.5)
y? = (nm/a)® + (nn/b)?
= (B ch yz3 + Cyz, sh yz;) sin (nma-1z;) sin (nnb-lz,)
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For buckling with the formation of a neck, the formations ¥ and ¥ satisfying
conditions (3. 1) and (3. 2) are represented as follows

Y = A ch yz, cos (nma-1z,) cos (nnb-lz,) (3.6)
% = (B sh yz3 4 Cyz;s ch yz;) sin (v ma=iz;) sin (nnb-lz,)

From (3, 3) and (3, 5), we obtain the characteristic equation in the form

detflay; | =0 (i, j=1,2,3) (3.7
0y = —peninb=ly ch yh, 0y, = —pouma-92(2p, — 0o*) ch y2
a3 = — ama~y? [(Zsso — Oo*) vhsh YA + 21 -%%;%f— ch vk]
Qg == —Oymn-ta=lb; oy = apnm-ldle;  ayy = o nmelb-ta
oy =0, 033 = — (2o —0¢*) Y shyh; g3 = — (21 — 00*) X
y*phch yh + 2ue? 4+ 6p* (g + By) vshyh

Ao+ Ho
and from (3, 7) we find
det [ a4 | = — V%o (2o — To*)2 v X (3.8)
{1 _— 2 (Mg 1 o) o 1 So* (Mg -+ 3p,) ShZYh}
(Ao -+ tho} (21 — 6¥) vk

It follows from (1, 2) and (1. 4) that the boundary conditions in the case of a follow-
er load are obtained formally from the boundary conditions for a dead load (conditions
(L2)for P =0) ifweset @,* = ( In the latter, In this case we obtain from
(3.8)

dot [| agy || = —4y*uo’vh [1 — sh2yh / 2yA] (3.9

Since sinh  2yh > 2yh , we obtain det [ ay; | << 0 from(3.9). Inthe
case of the action of a follower load, the equilibrium state is therefore stable, The
deduction obtained fllustrates the general result of Sect, 2, obtained for a body of
arbitrary shape,

For a dead load, we obtain a characteristic equation from (3. 8), whose roots have
physical meaning

— o (hotpg) +0o¥ (ho +3pg)  sh2ph _
! (Ro =+ o) (@ho — 56® A = 0 (3.10)

1t maust be noted that (3. 10) agrees in form with the corresponding equation [2]
for a strip, however, in the case under conxideration the quantities Ao, po, and op*
are exprested in terms of the elastic potential by using relationships for the spatial
problem, Let us note that we obtain an equation in the form (3. 10) also in the case
of buckling with the formation of a neck.
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Circular plates, Letus consider a circular plate (0<{r<CR; —h <
23 << -+ h) under all-around compression when it is rigidly clamped for r =
R and subjected to a dead load for T3 = - h . We form the rigid clamping con-
dition for r = R for the axisymmetric problem in the integral sense as follows:

2, =0, duy/or=20 (3.13)

Henceforth, we shall limit ourselves to an investigation of just the axisymmetric
problem of the plate, In this case, according to (1.2), we obtain the following bound-
ary conditions for 3 = 4=

(po — 09*)u, / 82y + (o — 0*)Buy / Or — du,/dzxg) =0 (3.12)
(Ao =+ 0*)Ou, / Or + u, / 1 + Buy / 0z5) + (2py — 0*)0uy /
0zg =0
The Euler method is also applicable in the case of the boundary conditions under
consideration., Let us use the representation (1, 5) of the solution of (1. 1) without in-
ertial terms, For the axisymmetric problem we obtain the following representation
from (1.5)

Hy 2= ___‘?_:_, b4 Ug == 0
T grdzy M (3.13)

Ay 4 *
v = T (5 + o+ e ) ¥

Here 7 is a biharmonic function, We select the biharmonic function satisfying
conditions (3, 1) in the case of the bending buckling mode as

x = {4 ch yz5 + Byzyshyzs)lolyr), Y=%/R, J (4)=0 (3.14)
and in the case of buckling with neck formation as

% = (4 sh yzg + Byz, ch yz,)J o(y7) (3.15)

Here J,(yr) is the zero order Bessel function of the first kind, Let us first consid-
er the bending buckling mode. From (3. 14) and (3. 12) we obtain the characteristic
equation in the farm (3.7) for i,j = 1,2. The elements of the characteristic
determinant are

ay = —7*2pe — &%) chyh, oy = —9*{(2u, — 0o*)vk sh vh + (3.16)
2po(ho +00*)(ho + po)~* ch YhI, agy = —y* @py — ao*)shph
ge = —y(2pe — 0* vk ch vh — [21,? + 0o* (R + o)l X
(Ao -+ po)~1 sh R}
We obtain the following expression from (3, 7) and (3. 16)

det || ag; [l = 7* (2pto --00"')2 vh X (8.17)

2 (ho - o) Jro-+ 0% (ho -+ 34e) sh 27 °
[1 20t talbe e o
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It must be noted that the solution (3. 15) in the case of buckling with neck format-
ion can be obtained from the solution (3, 14) in the case of the bending buckling mode
if the sinh and cosh are interchanged in the latter, which permits obtaining a charact-
eristic equation for buckling with neck formation from (8, 17), Since these functions
enter symmetricallv into (3, 17), thus (3. 17) refers to the two cases under consideration,

Setting @o* = 0 in(3.17), we obtain the characteristic determinant for the
follower load in the form

det [| &y || = v*4se’vh (1 — sh 2yh / 2yh)) (3.18)

By analogy with the rectangular plate, we find that the equilibrium state is stable
under the action of a follower load, The deduction obtained illustrates the general
result in Sect, 2 obtained for a body of arbitrary shape.

For the case of a dead load, we obtain an equation in the form (3. 10) whose roots
have physical meaning from (3. 17),

Now, let us consider examples for bodies with elastic potentials of specific form.

Example 1, Within the framework of the second variant of the theory of small
precritical deformations, let us consider the example of a body with an elastic potent-
ial in the form

O° = Y,A4,°2 4 pdy° (3.19)

The potential (3, 19) corresponds to a linearly elastic body, where A and u are
Lamé constants, From (3,19) and [2] we obtain

Mo =A—0p po=p+0 (3.20)

Analogously to [2], we determine two roots from (3, 20) and (3. 10)

Pra =G =[G — p (A + p)(1 — 2yh/sh 2yh)]"* (3.21)
= 1/, [3)h 4 5p = 2yh (A 4 p)/sh 2yA]

Here p = —0; is the compressive load intensity, From (8.21), we find for the
long-wavelength buckling mode (for thin-walled plates)

1 14 — 23v - 1442 1 E
P. =5 P, [1 — (v ——W] ; ?,=—§-(vh)'m‘

Here p. is the critical Ioad, pe is the value of the critical load evaluated by
involving the Kirchhoff —Love hypothesis for compression of a plate in its plane by
a uniformly distributed load ( Euler force); for a rectangular plate p,® == n? (a”2 - b7%),
for a circular plate y; = K, R,

Example 2, Within the framework of the theory of finite precritical deform-
ations, let us consider the example for a body with 2 potential of harmonic type [11}

= YAST?F pS SP=la— D+ R— D+ 0~ (.22
S = (g — 1P+ (g — 1)+ (g — 1)?
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Here A; are the elongation coefficients along the principal axes, From (3. 22)
and [4] we obtain

Ao =M — (B +2p)Ag — 1)/ Ay, po = (21 + (B + 4p)(Ay — 1)] / (2Ay) (3.23)
0p* = (3h + 2u)(\ — 1) / Ay

We find two roots from (3, 23) and (3. 10)

(ah=0, (o= [@h+ 20200+ 2) Sl |

h 2vh
[h+ (o8 -y 150 S22 ]

The first root has no physical meaning, In the case of the long-wavelength buck-
ling mode, we obtain from the second expression

M=) =1 — 5 (k)0 4+ )R+ 2p)7 BA + 2p)72
Therefore, buckling is possible under the effect of a dead load,

4, Stability of a circular cylinder Letusconsider the stabil-
ity of a circular cylinder (0 < r < R; 0 < z, < 1) under all-around compress-
ion when it is hinge supported for z3 = 0 and z3 = butisloaded by a dead
load for 7 == R, We understand the hinge~support conditions in the integral sense,
For 3 = 0 and %3 = ! the boundary conditions have the form (2.2) and the form
(L2)for r = R with P = (0. The Euler method is applicable in the case under
consideration, From (1.5), we obtain the general solution in the following form

_ 1t . & 9 1 »
= VT G b M= Vg 4D
— M2 Ay +-po  3°
Ay o (A Ao+ 20 axsz)x

Let us select the functions ¥ and X satisfying the conditions (2. 2) in the form

VY = sin (nml-'zs) A1, (mnl-r) sin nd (4.2)

¥ = cosn-l?—zs[Bl,, (m-—’%—-r) +Cm T“n’nﬂ (m -’-:-r)}cosne

We find the characteristic determinant from (4.2), (4. 1) and (1.2)
= 2o — 0o*)R-"maddet | a;; || (i, j=1,2,3), a=xnR/1 (4.3

ay = 1 (2py — og*)mal,’ (ma) — I, (ma)l
oy = miatl,"(ma)

1o = — 2o 220 1, (ma) + (20 — 00*) X
[mal n41 (ma) + 21 ns1 (ma))
0y = —mPat2py — 0o*),"(ma) + (By — 0p*)m?all, (ma)

gy = nl—mal,’'(ma) + I, (ma)l, &g = —n (2py —0o* )M nsy (ma)
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ag = man(p, — 0g*)M(ma), oy = miall’, (na)

Yy .
Qg == 2“ 2 + . I'n (ma) 4- (2po — 60*) [1 41 (ma) + mala.y (ma)]
Let us consider the rod buckling mode when n = m = { . For the long-wave-

length buckling mode (long rod) o < 1 . In this case we obtain [4] the character-
istic determinant with two-term accuracy in the form

o= Bzt (ha -t 00" o25) Hhollot ot x a0

(Mo-t+2p0)— (Ao + G0™) (Ao+1o) (2po — Go™)] + [2!»’40 (Ao + 00™) X
(120 + 1100*) + 2pt0 (Ao -+ 2120) (Ip0 + 759') -~
(210 — 00%) (ho -+ o) (12110 + 906*)1}

Let us examine examples for elastic bodies with potentials of specific form,

Example 1, Within the framewotk of the second variant of the theory of
small precritical deformations, let us examine the example for a body with an elastic
potential in the form (38,19), In this case we obtain from (3. 19), (8. 20) and (4.4)

Pc = Yapey Pe = Y@ (BA + 2u)/(A + p) (4.5)

Here p, isthe Euler force under axial-compression for a circular rod.

Example 2, Within the framework of the theory of finite precritical deform-
ations let us comsider an example for a body with a potential of harmonic type (3, 22).
In this case, the relationships (3.23) hold, From (3.22), (3.23) and (4.4), we obtain
for the long-wavelength buckling mode

(Ae=1 — Yeaipn/ (A + p) (4. 8)

Let p* denote the compressive load intensity per unit area at the time of buckl-
ing, It follows from [2]

p* = —Gy*Ay? (4.7)
From the third expression in (3, 23), (4. 6) and (4. 7) we obtain

Po* == 1/gps {4.8)

The expressions (4, 8) and (4, 5) agree. Therefore, if the critical load is measured
per unit area at the time of buckling, then the results obtained by the theory of finite
precritical deformations and by the second variant of the theory of small precritical
deformations agree in the case of the long-wavelength buckling mode (for a long rod).
Analogous results are obtained for strips and plates.

The results obtained afford the possibility of making a general deduction about the
stability problem for uniform all-around compresion of simply-connected isotropic
compressible bodies on one part §, of whote surface S = S, 4 S, hinge-support
or rigid clamping conditions are given, This deduction is that the equilibrium state
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will be stable if the pressure is applied in the form of a follower load on the part S,
of the body surface, and unstable if the pressure is applied in the form of a dead load
on the part S, of the body surface. In this latter case, the critical load for thin-
walled bodies is half the Enler force under compression.
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